425 research outputs found

    Conditional quantum state engineering in repeated 2-photon down conversion

    Full text link
    The U(1,1) and U(2) transformations realized by three-mode interaction in the respective parametric approximations are studied in conditional measurement, and the corresponding non-unitary transformation operators are derived. As an application, the preparation of single-mode quantum states using an optical feedback loop is discussed, with special emphasis of Fock state preparation. For that example, the influence of non-perfect detection and feedback is also considered.Comment: 17 pages, 4 figures, using a4.st

    Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Get PDF
    Improving the understanding of strongly correlated quantum many body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate and experimentally probe the properties of such systems. In this work we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states - a class of states which has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics (cQED) system we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to exotic models involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.Comment: 11 pages, 9 figure

    Geometric Phase and Non-Adiabatic Effects in an Electronic Harmonic Oscillator

    Full text link
    Steering a quantum harmonic oscillator state along cyclic trajectories leads to a path-dependent geometric phase. Here we describe an experiment observing this geometric phase in an electronic harmonic oscillator. We use a superconducting qubit as a non-linear probe of the phase, otherwise unobservable due to the linearity of the oscillator. Our results demonstrate that the geometric phase is, for a variety of cyclic trajectories, proportional to the area enclosed in the quadrature plane. At the transition to the non-adiabatic regime, we study corrections to the phase and dephasing of the qubit caused by qubit-resonator entanglement. The demonstrated controllability makes our system a versatile tool to study adiabatic and non-adiabatic geometric phases in open quantum systems and to investigate the potential of geometric gates for quantum information processing

    Information/disturbance trade-off in continuous variable Gaussian systems

    Full text link
    We address the information/disturbance trade-off for state-measurements on continuous variable Gaussian systems and suggest minimal schemes for implementations. In our schemes, the symbols from a given alphabet are encoded in a set of Gaussian signals which are coupled to a probe excited in a known state. After the interaction the probe is measured, in order to infer the transmitted state, while the conditional state of the signal is left for the subsequent user. The schemes are minimal, {\em i.e.} involve a single additional probe, and allow for the nondemolitive transmission of a continuous real alphabet over a quantum channel. The trade-off between information gain and state disturbance is quantified by fidelities and, after optimization with respect to the measurement, analyzed in terms of the energy carried by the signal and the probe. We found that transmission fidelity only depends on the energy of the signal and the probe, whereas estimation fidelity also depends on the alphabet size and the measurement gain. Increasing the probe energy does not necessarily lead to a better trade-off, the most relevant parameter being the ratio between the alphabet size and the signal width, which in turn determine the allocation of the signal energy.Comment: 9 pages, 6 figures, revised version, title changed, accepted PR

    Relationship Between Behavioural Traits and Performance Test Scores in Sport Horses

    Full text link
    • …
    corecore